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RlVACO N From Fairy Dust to Forecasts: Transformers at Work
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Abstract

The dominant sequence transduction models are based on complex recurrent or
convolutional neural networks that include an encoder and a decoder. The best
performing models also connect the encoder and decoder through an attention
mechanism. We propose a new simple network architecture, the Transformer,
based solely on attention mechanisms, dispensing with recurrence and convolutions
entirely. Experiments on two machine translation tasks show these models to
be superior in quality while being more parallelizable and requiring significantly
less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-
to-German translation task, improving over the existing best results, including
ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task,
our model establishes a new single-model state-of-the-art BLEU score of 41.8 after
training for 3.5 days on eight GPUs, a small fraction of the training costs of the
best models from the literature. We show that the Transformer generalizes well to
other tasks by applying it successfully to English constituency parsing both with
large and limited training data.

Source: arXiv:1706.03762
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The Complexity of Transformers
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Figure |: The Transformer - model architecture.
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RlVACO N Architectural Deep Dive
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Source: https://towardsdatascience.com/transformers-explained-visually-part-1-overview-of-functionality-95a6dd460452/

August 2025 RIVACON ML Event



R I VACO N The Attention Mechanism: The Transformer’s Secret Sauce

« Attention = focus mechanism
* Lets model highlight relevant parts of input sequence
« Similar to human reading: context matters, not words in isolation:
> ,The risk manager rejected the position because it was too big.”
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* Query (Q): Your specific question or research
topic

« Keys (K): Keywords or tags on the book spines

* Values (V): The actual content inside the books
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Source: https://medium.com/@nitinmittapally/understanding-attention-in-transformers-a-visual-guide-df416bfe495a
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R I VACO N The Attention Mechanism: The Transformer’s Secret Sauce

* Q x KAT computes the similarity between your
query and all available keys (how relevant each

Attention(Q,K,V) = .
i ; book is)
Q « d_kis just a scaling factor to keep the numbers
. manageable
softmax ( ] ) T— - softmax converts these similarities into
o percentages (80% from this book, 15% from that

one, 5% from another)
* V contains the actual information you extract
(weighted by those percentages)

Source: https://medium.com/@nitinmittapally/understanding-attention-in-transformers-a-visual-guide-df416bfe495a
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RlVACO N Transformers in Practice: PyTorch Forecasting

_ > Implementation of Temporal Fusion Transformer (Lim et al., 2020)
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Source: arXiv:1912.09363
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RlVACO N Transformers in Practice: PyTorch Forecasting
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 Forecasts the behavior of the time series,
BUT: solid theory is missing, i.e., much of it
runs on heuristics

* |Interpretable Attention: How impactful
were past events on today’s forecast?

Source: arXiv:1912.09363

August 2025 RIVACON ML Event



RlVACO N High Memory Demand During Training

Memory Usage vs. Sequence Length for TFT (CPU Training)

—&8— Measured Memory Usage (MB)

* High number of parameters 160 1

* Limited context window: strictly 14 -
limits the available context and
prevents memory overflow

« BUT: significantly restricts the
model’s ability to learn from long
histories

* Computationally expensive and
high energy consumption %0

« Sustainability and accessibility
remain major challenges
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R I VACO N Black-Box Character & Interpretability

hidden_size=64,attention_head_size=4, hidden_size=16,attention_head_size=1,
dropout=0. dropout=0.1
» U32 K Total params > 30.6 K Total params

Encoder variables importance

Encoder variables importance
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RlVACO N Summary - No Fairy Dust Required

Garbage In,
Garbage Out

Attention Can Overfitting to
Be Distracted Noise

Computationally

Expensive Not Magic
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